sexta-feira, 26 de abril de 2013

Matemática no "Rock Paper Scissors Lizard Spock" - Parte 2

De regresso ao "Rock Paper Scissors Lizard Spock".
Da última vez, perguntei porque é que tínhamos um jogo com 3 armas, outro com 5 mas não o tínhamos com 4 armas.

Podíamos ter? Bem, vamos a ver o que se passa com 3 armas.

Cada arma vence apenas uma arma.
Cada arma é derrotada por apenas uma arma
Cada arma empata apenas com uma arma

Com 5 armas

Cada arma vence duas armas.
Cada arma é derrotada por duas armas
Cada arma empata apenas com uma arma


Se em cada caso dispusermos as armas sobre os vértices de um polígono regular,  e desenharmos setas que partem das armas vencedoras para as derrotadas (ou, como dizemos em Matemática, se desenharmos um grafo orientado), observa-se que se temos N armas, o total de setas que entram ou saem daquele vértice é N-1.
Isto não é uma mera observação. Em qualquer polígono regular com N lados, existem sempre N-1 diagonais que passam por esse vértice.

Para o jogo ser equilibrado temos de ter igual número de setas a entrar e a partir.

Isso obriga a que N-1 seja um número par, mais precisamente igual ao dobro do número K de setas que partem de cada vértice, (ou de igual modo, igual ao número K de setas que chegam a cada vértice).

Ou seja N-1=2K .
Esta equação é equivalente a N=2K+1, que indica que N tem de ser ímpar.

Conclusão, com 4 armas, não é possível termos um jogo "justo".
Cada vértice teria direito apenas a três setas. De alguns sairiam duas setas e entraria uma, ou seja, uma arma derrotaria duas mas seria derrotada apenas por uma.
De outros, sairia uma, e entrariam duas, ou seja, as armas correspondentes a estes vértices apenas derrotariam uma arma e seriam derrotadas por duas, tornando-as péssimas escolhas.

O numero total de pares de armas distintas, logo, de setas,  é dado pela fórmula:

No próximo post sobre este assunto generalizaremos para N armas, com N impar, o que foi feito na primeira parte.
 Acabei hoje de implementar um simulador de Rock Paper Scissors Lizard Spock que está disponível neste link, e em breve estará linkado na secção Blog-Apps.

Até à próxima


Sobre isto, neste blog:


Sem comentários:

Este blog recusa-se a utilizar o Acordo Ortográfico de 1990